Как сделать регулятор мощности паяльника своими руками

Схемы тиристорных регуляторов мощности паяльника, подробно

Чтобы пайка была красивой и качественной, необходимо правильно выбрать мощность паяльника, обеспечить температуру жала. Все это зависит от марки припоя.

На ваш выбор предоставляю несколько схем тиристорных регуляторов регулирования температуры паяльника, которые можно изготовить в домашних условиях.

Они просты легко заменят промышленные аналоги, к тому же цена и сложность будет отличаться.

Электрические принципиальные схемы регуляторов температуры паяльника

Чтоб регулировать температуру жала паяльника используются паяльные станции, которые в автоматическом и ручном режимах поддерживает заданную температуру. Доступность паяльной станции ограничивается размером кошелька.

Я решил эту проблему, изготовив ручной регулятор температура, имеющий плавную регулировку. Схема легко дорабатывается до автоматического поддержания заданного режима температуры.

Но я сделал вывод, что ручной регулировки достаточно, так как температура помещения и ток сети стабильны.

Классическая тиристорная схема регулятора

Классическая схема регулятора была плоха тем, что имела излучающие помехи, издаваемые в эфир и сеть. Радиолюбителям эти помехи мешают при работе.

Если доработать схему, включив в нее фильтр, размеры конструкции значительно увеличатся.

Но это схема может использоваться и в других случаях, например, если необходимо отрегулировать яркость ламп накаливания или нагревательных приборов, мощность которых 20-60 Вт. Поэтому я представляю эту схему.

Обратите внимание

Чтобы понять, как это работает, рассмотрим принцип работы тиристора. Тиристор представляет собой полупроводниковый прибор закрытого или открытого типа. Чтоб открыть его, на управляющий электрод подается напряжение равное 2-5 В. Оно зависит от выбранного тиристора, относительно катода (буква k на схеме).

Тиристор открылся, между катодом и анодом образовалось напряжение равное нулю. Через электрод его невозможно закрыть. Он будет открыт до того времени, пока значение напряжения катода (k) и анода (a) не будет близко к нулю. Вот такой принцип.

Схема работает следующим образом: через нагрузку (обмотка паяльника или лампа накаливания) подается напряжение на диодный мост выпрямителя, выполненный диодами VD1-VD4. Он служит для преобразования переменного тока в постоянный, который меняется по синусоидальному закону (1 диаграмма). В крайнем левом положении сопротивление среднего вывода резистора равно 0.

При увеличении напряжения происходит зарядка конденсатора С1. Когда напряжение С1 будет равно 2-5 В, на VS1 пойдет ток через R2. При этом произойдет открытие тиристора, закорачивание диодного моста, максимальный ток пройдет через нагрузку (диаграмма сверху).

Если повернуть ручку резистора R1, произойдет увеличение сопротивления, конденсатор С1 будет заряжаться дольше. Следовательно, открытие резистора произойдет не сразу. Чем мощнее R1, тем больше времени уйдет на заряд С1. Вращая ручку вправо или влево, можно регулировать температуру нагрева жала паяльника.

На фото выше предоставлена схема регулятора, собранная на тиристоре КУ202Н. Чтоб управлять этим тиристором (в паспорте указан ток 100мА, реально – 20 мА), необходимо уменьшить номиналы резисторов R1, R2, R3 исключаем, емкость конденсатора увеличиваем. Емкость С1 необходимо повысить до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще один вариант схемы, только упрощенный, деталей минимум. 4 диода заменены одним VD1. Отличие данной схемы заключается в том, что регулировка происходит при положительном периоде сети.

Отрицательный период, проходя через диод VD1, остается без изменений, мощность можно регулировать от 50% до 100%. Если исключить VD1 из схемы, мощность можно будет регулировать в диапазоне от 0% до 50%.

Если применить динистор КН102А в разрыв от R1 и R2, придется заменить С1 на конденсатор емкостью 0,1 мкФ. Для этой схемы подойдут такие номиналы тиристоров: КУ201Л (К), КУ202К (Н,М,Л), КУ103В, напряжением для них более 300 В. Диоды любые, обратное напряжение которых не меньше, чем 300 В.

Важно

Выше упомянутые схемы успешно подойдут для регулировки ламп накаливания в светильниках. Регулировать светодиодные и энергосберегающие лампы не удастся, так как они имеют электронные схемы управления. Это приведет к миганию или работе лампы на полную мощность, что в конечном итоге выведет ее из строя.

Если вы хотите применить регуляторы для работы в сети 24,36 В, придется уменьшить номиналы резисторов и заменить тиристор на соответствующий. Если мощность паяльника 40 Вт, напряжение сети 36 В, он будет потреблять 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Эта схема отличается от предыдущей полным отсутствием изучаемых радиопомех, так как процессы протекают в тот момент, когда напряжение сети равно 0.

Приступая к созданию регулятора, я исходил из следующих соображений: комплектующие должны иметь низкую цену, высокую надежность, малые габариты, сама схема должна быть проста, легко повторяемая, КПД должен быть близким к 100%, помехи должны отсутствовать. Схема должна иметь возможность модернизации.

Принцип работы схемы следующий. VD1-VD4 выпрямляют напряжение сети. Получающееся постоянное напряжение изменяется по амплитуде равной половине синусоиды частотой 100 Гц (1 диаграмма). Ток, проходя через R1 на VD6 — стабилитрон, 9В (2 диаграмма), имеет другую форму. Через VD5 импульсы заряжают С1, создавая 9 В напряжения для микросхем DD1, DD2. Для защиты применяется R2.

Он служит для ограничения напряжения, поступаемого на VD5, VD6 до 22 В и формирует тактовый импульс для работы схемы. R1 передает сигнал на 5, 6 вывод элемента 2 либо не логическую цифровую микросхему DD1.1, которая в свою очередь инвертирует сигнал и преобразует его в короткий прямоугольный импульс (3 диаграмма).

Импульс исходит с 4-го вывода DD1 и приходит на вывод D №8 триггера DD2.1, который работает в RS режиме. Принцип работы DD2.1 такой же и, как и DD1.1 (4 диаграмма). Рассмотрев диаграммы №2 и 4, можно сделать выводы, что отличия практически нет. Получается, что с R1 можно подать сигнал на вывод №5 DD2.1. Но это не так, R1 имеет множество помех.

Придется устанавливать фильтр, что не целесообразно. Без двойного формирования схемы стабильной работы не будет.

Схема управления регулятора собрана на базе триггера DD2.2, работает она по следующему принципу. C вывода №13 триггера DD2.1 поступают импульсы на 3 вывод DD2.2, перезапись уровня которых происходит на выводе №1 DD2.2, которые на данном этапе находятся на D входе микросхемы (5 вывод). Противоположный уровень сигнала находится на 2 выводе.

Предлагаю рассмотреть принцип работы DD2.2. Предположим, что на 2 выводе, логическая единица. С2 заряжается до необходимого напряжения через R4, R5. Когда появится первый импульс с положительным перепадом на 2 выводе образуется 0, через VD7 произойдет разрядка С2.

Последующий перепад на 3 выводе установит на 2 выводе логическую единицу, С2 начнет накапливать емкость через R4, R5. Время зарядки зависит от R5. Чем оно больше, тем дольше будет происходить зарядка С2. Пока конденсатор С2 не накопит 12 емкости, на 5 выводе будет 0.

Совет

Перепад импульсов на 3 входе не будет влиять на изменение логического уровня на 2 выводе. При достижении полного заряда конденсатора, произойдет повторение процесса. Количество импульсов, заданных резистором R5, будет поступать на DD2.2. Перепад импульсов будет происходить только в те моменты, когда напряжение сети будет переходить через 0.

Вот почему отсутствуют помехи на данном регуляторе. С 1 вывода DD2.2 на DD1.2 подаются импульсы. DD1.2 исключает влияние VS1 (тиристор) на DD2.2. R6 установлен для ограничения тока управления VS1. На паяльник подается напряжение за счет открытия тиристора.

Это происходит из-за того, что на тиристор поступает положительный потенциал с управляющего электрода VS1. Этот регулятор позволяет производить регулировку мощности в диапазоне 50-99%. Хоть резистор R5 – переменный, за счет включенного DD2.2 регулировка паяльника осуществляется ступенчатым образом.

Когда R5 = 0, происходит подача 50% мощности (5 диаграмма), если повернуть на определенный угол, будет 66% (6 диаграмма), затем 75% (7 диаграмма). Чем ближе к рассчитанной мощности паяльника, тем плавне работа регулятора. Допустим, имеется паяльник на 40 Вт, его мощность можно регулировать в районе 20-40 Вт.

Конструкция и детали регулятора температуры

Детали регулятора располагаются на стеклотекстолитовой печатной плате. Плата помещена в пластиковый корпус от бывшего адаптера, имеющего электрическую вилку. Ручка из пластика надета на ось резистора R5. На корпусе регулятора имеются отметки с цифрами, позволяющие понимать, какой температурный режим выбран.

Шнур паяльника припаян к плате. Подключение паяльника к регулятору можно сделать разъемным, чтобы иметь возможность подключить другие объекты. Схема потребляет ток не превышающий 2мА. Это даже меньше, чем потребление светодиода в подсветке выключателя. Специальные меры по обеспечению режим работы устройства не требуются.

При напряжении 300 В и токе 0,5 А применяются микросхемы DD1, DD2 и серии 176 либо 561; диоды любые VD1-VD4. VD5, VD7 — импульсные, любые; VD6 — маломощный стабилитрон с напряжением 9 В. Конденсаторы любые, резисторе тоже. Мощность R1 должна быть 0,5 Вт. Дополнительной настройки регулятора не потребуется. Если детали исправны и при подключении не возникало ошибок, он заработает сразу.

Схема была разработана давно, когда лазерных принтеров и компьютеров не было.

По этой причине печатная плата изготавливалась по дедовскому методу, использовалась диаграммная бумага, шаг сетки которой 2,5 мм.

Далее чертеж приклеивался «Моментом» на бумагу по плотнее, а сама бумага на фольгированный стеклотекстолит. Зачем сверлились отверстия, дорожки проводников и контактных площадок вычерчивались вручную.

У меня сохранился чертеж регулятора. На фото показан. Изначально применялся диодный мост номиналом КЦ407 (VD1-VD4). Их разрывало пару раз, пришлось заменить 4 диодами типа КД209.

Как снизить уровень помех от тиристорных регуляторов мощности

Чтоб уменьшить помехи, излучаемые тиристорным регулятором, применяют ферритовые фильтры. Они представляют собой ферритовое кольцо, имеющее обмотку.

Эти фильтры встречаются в импульсных блоках питания телевизоров, компьютеров и других изделий. Любой тиристорный регулятор можно оснастить фильтром, который будет эффективно подавлять помехи.

Для этого необходимо пропустить через ферритовое кольцо сетевой провод.

Ферритовый фильтр следует устанавливать вблизи источников, издающих помехи, непосредственно в месте установки тиристора. Фильтр может быть расположен как снаружи корпуса, так и внутри. Чем больше количество витков, тем качественней фильтр будет подавлять помехи, но и достаточно продеть провод, идущий к розетке, через кольцо.

Кольцо можно изъять из интерфейсных проводов компьютерной периферии, принтеров, мониторов, сканеров. Если посмотреть на провод, который соединяет монитор или принтер с системным блоком, можно заметить цилиндрическое утолщение на нем. Именно в этом месте расположен ферритовый фильтр, служащий для защиты от высокочастотных помех.

Берем нож, разрезаем изоляцию и извлекаем ферритовое кольцо. Наверняка у ваших друзей или у вас завалялся старый интерфейсный кабель од кинескопного монитора или струйного принтера.

Источник: https://www.proterem.ru/elektrika/shemy-tiristornyh-reguljatorov-moshhnosti.html

Как сделать регулятор мощности для паяльника? Регулятор мощности для паяльника своими руками: схемы и инструкция

 Устройства для настройки уровня напряжения, подающегося на нагревательный элемент, нередко используются радиолюбителями для предотвращения преждевременного разрушения жала паяльника и повышения качества пайки.

Обратите внимание

Наиболее распространенные схемы регуляторов мощности для паяльника содержат двухпозитронные контактные переключатели и тринисторные устройства, установленные в подставке. Эти и другие приборы обеспечивают возможность выбора необходимого уровня напряжения.

Сегодня применяются самодельные и заводские установки.

Устройства для настройки уровня напряжения, подающегося на нагревательный элемент, нередко используются радиолюбителями для предотвращения преждевременного разрушения жала паяльника и повышения качества пайки.

Обратите внимание

Наиболее распространенные схемы регуляторов мощности для паяльника содержат двухпозитронные контактные переключатели и тринисторные устройства, установленные в подставке. Эти и другие приборы обеспечивают возможность выбора необходимого уровня напряжения.

Сегодня применяются самодельные и заводские установки.

Простой регулятор мощности для паяльника

Если нужно получить 40 Вт из паяльника на 100 Вт, можно применить схему на симисторе ВТ 138-600. Принцип работы заключается в обрезке синусоиды. Уровень среза и температуру нагрева можно регулировать, используя резистор R1. Неоновая лампочка выполняет функцию индикатора. Ставить ее не обязательно. На радиатор устанавливается симистор ВТ 138-600.

Корпус

Вся схема обязательно должна быть помещена в закрытый диэлектрический корпус. Желание сделать прибор миниатюрным не должно влиять на безопасность при его использовании. Помните, что устройство работает от источника напряжения 220 В. 

Читайте также:  Как самостоятельно выбрать лазерный нивелир

Тринисторный регулятор мощности для паяльника

В качестве примера можно рассмотреть устройство, рассчитанное на нагрузку от нескольких ватт до сотни. Диапазон регулирования номинальной мощности такого прибора изменяется от 50% до 97%. В устройстве используется тринистор КУ103В с удерживающим током не более одного миллиампера.

Через диод VD1 беспрепятственно проходят отрицательные полуволны напряжения, обеспечивая примерно половину всей мощности паяльника. Ее можно регулировать тринистором VS1 в течение каждого положительного полупериода. Устройство включается встречно-параллельно диоду VD1. Тринистор управляется по фазоимпульсному принципу.

Генератор вырабатывает импульсы, поступающие на управляющий электрод, состоящий из цепи R5R6C1, задающей время, и однопереходного транзистора. 

Позицией ручки резистора R5 определяется время от положительного полупериода. Схема регулятора мощности требует температурной стабильности и повышения помехоустойчивости. Для этого можно зашунтировать управляющий переход резистором R1.

Цепь R2R3R4VT3

Генератор питается импульсами напряжением до 7В и длительностью 10 мс, сформированными цепью R2R3R4VT3. Переход транзистора VT3 является стабилизирующим элементом. Он включается в обратном направлении.

Мощность, которую рассеивает цепь резисторов R2-R4, будет уменьшена. Схема регулятора мощности включает в себя конденсатор С1КМ5, резисторы — МЛТ и R5 — СП-0,4. Транзистор можно использовать любой.

 

Плата и корпус для прибора

Важно

Для сборки данного устройства подойдет плата из фольгированного стеклопластика диаметром 36 мм и толщиной 1 мм. Для корпуса можно использовать любые предметы, например пластиковые коробки или футляры из материала с хорошей изоляцией. Понадобится база под элементы вилки. Для этого к фольге можно припаять две гайки М 2,5 таким образом, чтобы штыри прижимали плату к корпусу при сборке.

Недостатки тринисторов КУ202

Если мощность паяльника небольшая, регулирование возможно только в узкой области полупериода. В той, где удерживающее напряжение тринистора хотя бы немного ниже тока нагрузки. Температурная стабильность не может быть достигнута, если использовать такой регулятор мощности для паяльника.

Повышающий регулятор

Большая часть устройств для стабилизации температуры работает только на снижение мощности. Регулировать напряжение можно от 50-100% или от 0-100%. Мощности паяльника может оказаться недостаточно в случае подачи питания ниже 220 В или, например, при необходимости выпаять большую старую плату.

Действующее напряжение сглаживается электролитическим конденсатором, увеличивается в 1,41 раза и питает паяльник. Постоянная мощность, выпрямленная на конденсаторе, достигнет 310 В при питании 220 В. Оптимальная температура нагрева может быть получена даже при 170 В.

Мощные паяльники не нуждаются в повышающих регуляторах. 

Необходимые детали для схемы

Чтобы собрать удобный регулятор мощности для паяльника своими руками, можно использовать метод навесного монтажа возле розетки. Для этого нужны малогабаритные комплектующие. Мощность одного резистора должна составлять не менее 2 Вт, а остальных — 0,125 Вт.

Описание схемы повышающего регулятора мощности

На электролитическом конденсаторе C1 с мостом VD1 выполнен входной выпрямитель. Его рабочее напряжение не должно быть меньше 400 В. На полевом транзисторе IRF840 размещается выходная часть регулятора. С этим устройством можно использовать паяльник до 65 Вт без радиатора. Они могут нагреваться выше нужной температуры даже при пониженной мощности питания.

Управление ключевым транзистором, размещенным на микросхеме DD1, производится от ШИМ-генератора, частота которого задается конденсатором C2. Параметрический стабилизатор монтируется на приборах C3, R5 и VD4. Он питает микросхему DD1. Для защиты выходного транзистора от самоиндукции устанавливается диод VD5.

Его можно не ставить, если регулятор мощности паяльника не будет использоваться с другими электрическими приборами.

Возможности замены деталей в регуляторах

Микросхема DD1 может быть заменена на К561ЛА7. Выпрямительный мостик делается из диодов, рассчитанных на минимальный ток 2А. Устройство IRF740 можно использовать как выходной транзистор. Схема не нуждается в накладке, если все детали исправны и при ее сборке не было допущено ошибок. 

Другие возможные варианты устройств для рассеивания напряжения

Совет

Собираются простые схемы регуляторов мощности для паяльника, работающие на симисторах КУ208Г. Вся их хитрость в конденсаторе и неоновой лампочке, которая, меняя свою яркость, может послужить в качестве индикатора мощности. Возможное регулирование – от 0% до 100%.

При отсутствии симистора или лампочки можно применить тиристор КУ202Н. Это весьма распространенный прибор, имеющий множество аналогов. С его использованием можно собрать схему, работающую в диапазоне от 50% до 99% мощности.

Ферритовое кольцо от компьютерного шнура можно использовать для изготовления петли, чтобы погасить возможные помехи от переключения симистора или тиристора. 

Стрелочный индикатор

В регулятор мощности паяльника может быть интегрирован стрелочный индикатор для большего удобства при использовании. Сделать это совсем несложно. Неиспользуемая старая аудиоаппаратура может помочь с поиском таких элементов. Приборы несложно найти на местных рынках в любом городе.

Хорошо, если один такой лежит дома без дела. Для примера рассмотрим возможность интегрирования в регулятор мощности для паяльника индикатора М68501 со стрелкой и цифровыми отметками, который устанавливался в старых советских магнитофонах. Особенность настройки заключается в подборе резистора R4.

Наверняка придется подбирать прибор R3 дополнительно, если будет использован другой индикатор. Необходимо соблюдение соответствующего баланса резисторов при понижении мощности паяльника.

Дело в том, что стрелка индикатора может отображать снижение мощности на 10-20% при фактическом потреблении паяльником 50%, то есть наполовину меньше. 

Заключение

Регулятор мощности для паяльника можно собрать, руководствуясь множеством инструкций и статей с приведенными примерами возможных разнообразных схем. От хороших припоев, флюсов и температуры нагревательного элемента во многом зависит качество спайки.

Обратите внимание

Сложные устройства для стабилизации или элементарное интегрирование диодов может применяться при сборке аппаратов, необходимых для регулирования поступающего напряжения. Такие приборы широко используются с целью понижения, а также повышения мощности, подающейся на нагревательный элемент паяльника в диапазоне от 0% до 141%. Это очень удобно.

Появляется реальная возможность работать при напряжении ниже 220 В. На современном рынке доступны качественные аппараты, укомплектованные специальными регуляторами. Заводские устройства работают только на понижение мощности. Повышающий регулятор придется собирать самостоятельно. Темпе­ратурные контрол­леры Delta  volna.byvolna.

by Профес­сиональный подход, 20 лет на рынке, офици­альный дистри­бьютор. Скрыть рекламу: Не интересуюсь этой темой Товар куплен или услуга найдена Нарушает закон или спам Мешает просмотру контента Спасибо, объявление скрыто. Дозатор паяльной пасты! 5 моделей!  smttech.rusmttech.

ru Ручные, настольные и линейные! Для началь­ного уровня и для произ­водства! Заходите! Скрыть рекламу: Не интересуюсь этой темой Товар куплен или услуга найдена Нарушает закон или спам Мешает просмотру контента Спасибо, объявление скрыто. Прин­ципи­альные схемы, бесплатно  rlocman.rurlocman.ru Подробнее в каталоге элек­триче­ских схем и статей. Помощь на форуме.

Скрыть рекламу: Не интересуюсь этой темой Товар куплен или услуга найдена Нарушает закон или спам Мешает просмотру контента Спасибо, объявление скрыто. Усили­тель мощности типа У 13  промнеликвид.белпромнеликвид.бел тири­сторный Скрыть рекламу: Не интересуюсь этой темой Товар куплен или услуга найдена Нарушает закон или спам Мешает просмотру контента Спасибо, объявление скрыто.

Источник: http://radiodvor.com/news/relax/kak-sdelat-reguljator-moschnosti-dlja-pa.html

Регулятор мощности паяльника схема

Наиболее удобным устройством, позволяющим оптимизировать температуру жала электропаяльника, является тиристорный регулятор мощности. Ниже помещено описание одного из таких регуляторов, построенного на доступных элементах. Он рассчитан на совместную работу с наиболее распространенными электропаяльниками мощностью 40 и 80 Вт.

https://www.youtube.com/watch?v=PVmdbN-q8zs

Самодельный регулятор мощности для паяльника может нормально работать совместно с нагрузкой мощностью до 200 Вт; если тринистор установить на теплоотвод с эффективной поверхностью рассеяния тепла 200…250 кв.см, мощность нагрузки можно довести до 400 Вт.

Применение тринистора из серии КУ201 позволило без усложнения увеличить стойкость регулятора к случайным замыканиям цепи нагрузки.

Паяльник соединен последовательно с тринистором VS1 (рис.1), встречно-параллельно которому включен диод VD1.

Поэтому при закрытом тринисторе через нагреватель паяльника протекают минусовые полупериоды сетевого тока, обеспечивая его работу с мощностью, равной примерно половине номинальной.

Важно

Когда тринистор полностью открыт в течение каждого плюсового полупериода, паяльник работает при мощности, близкой к номинальной.

Рис. 1 Схема регулятора мощности паяльника на основе тринистора.

В течение минусовых полупериодов сети напряжение между точками А и Б равно прямому падению напряжения на диоде VD1 (около 0,6 В), поэтому узел формирования импульсов, открывающих тринистор, не работает, тринистор закрыт.

В начале плюсового полупериода сети диод VD1 закрывается и напряжение Uаб между точками А и Б увеличивается, соответственно увеличивается и напряжение Uвб между точками В и Б. К середине полупериода напряжение Uаб становится равным амплитудному значению, а напряжение Uвб, достигнув примерно 7 В, далее не увеличивается.

Этим устройство обязано “стабилитрону”, в роли которого выступает обратно включенный эмиттерный переход транзистора VT3. Стабилизированным напряжением Uвб питается формирователь открывающих импульсов, собранный на зарядном конденсаторе С1 и аналоге однопереходного транзистора VT1VT2. Конденсатор С1 начинает заряжаться от начала плюсового полупериода.

Напряжение на нем увеличивается до момента открывания аналога однопереходного транзистора. В этот момент конденсатор разряжается через аналог и управляющий переход тринистора, что приводит к открыванию тринистора.

Время зарядки конденсатора до момента открывания тринистора в пределах полупериода можно регулировать переменным резистором R2, изменяя тем самым мощность, выделяемую в нагрузке. Как только открывается тринистор, напряжение на нем (Uаб) уменьшается примерно до 2 В и формирователь открывающих импульсов выключается.

Тринистор остается открытым до конца плюсового полупериода, после чего закрывается. С началом очередного минусового полупериода сети описанный процесс повторяется. Переключателем SA1 выбирают режим работы регулятора. В верхнем по схеме положении переключателя регулятор включен и позволяет устанавливать мощность паяльника в пределах от 50 до 100% от номинальной. В среднем положении переключателя и регулятор, и паяльник выключены, а в нижнем – регулятор выключен, а паяльник включен на полную номинальную мощность.

Регулятор собирают на печатной плате из фольгирсванного стеклотекстолита толщиной 1 мм.

Совет

Чертеж одного из вариантов печатной платы устройства, рассчитанного на работу с паяльником 40 или 80 Вт, показан на рис.2.

Плата изготовлена без травления хлорным железом; нужно только прорезать фольгу резаком по линиям чертежа и, поддев ножом край фольги с угла, удалить пинцетом незаштрихованные ее участки.

Рис. 2 Печатная плата из фольгированного стекловолокна регулятора мощности паяльника.

Детали на плату монтируют со стороны фольги. Места припайки выводов обозначены на чертеже точками. Плату помещают в прямоугольную коробку из теплостойкой пластмассы, которую удобно использовать одновременно в качестве подставки для паяльника. На одной из стенок коробки монтируют гнезда X1, арматуру предохранителя FU1 и переменный резистор R3.

Около ручки резистора R3 целесообразно нанести простейшую шкалу из шести равных делений и оцифровать их числами 50, 60, 70, …. .100, означающими мощность в процентах от номинальной.

На самом деле зависимость мощности от угла поворота ручки нелинейна, но эта неточность для практики пайки несущественна, тогда как наличие шкалы заметно облегчает пользование регулятором. Еще более удобной станет шкала, если вместо роторного (поворотного) применить ползунковый переменный резистор (с поступательным перемещением движка).

Можно собрать регулятор и в металлической коробке, но в этом случае следует при монтаже проследить за тем, чтобы коробка не оказалась под напряжением сети. Ручка переменного резистора должна быть обязательно пластмассовой.

Номинал переменного резистора R2 может быть любым в пределах от 33 кОм до 100 кОм. Транзисторы подойдут с любыми буквенными индексами. Конденсатор С1 – любой, емкостью от 0,05 до 0,1 мкФ.

Диод VD1 -любой кремниевый на обратное напряжение не менее 300 В и прямой ток не менее 0,5 А; Если ограничиться мощностью нагрузки 200 Вт, то подойдет диод Д226Б. Налаживания регулятор, как правило, не требует. Если после сборки он не заработал, это говорит о неисправности вероятнее всего либо тринистора, либо одного из транзисторов.

Обратите внимание

Неисправность транзистора VT3 можно установить, временно заменив его стабилитроном Д814А, a VT1 и VT2 – заведомо исправными транзисторами. Если в собранном регуляторе исправен, но не открывается тринистор (нет регулирования мощности), то это означает, что примененный экземпляр тринистора имеет слишком низкую чувствительность по управлению.

Читайте также:  Шаблоны для фрезера: изготовление своими руками

Иначе говоря, энергии импульса, вырабатываемого в регуляторе, недостаточно для открывания тринистора. Такой экземпляр лучше всего заменить более чувствительным.

Л.Ломакин, г.Москва, Радио №4, 1994 г., стр.38
Сборник “Паяльники и припои” составленный А.Н. Борисовым 2004

Самодельный миниатюрный паяльникСхема регулятора температуры жала паяльника

Источник: https://www.freeseller.ru/1301-regulyator-moschnosti-payalnika-shema.html

Регулятор температуры паяльника — качество пайки гарантировано

Регулятор температуры паяльника позволяет регулировать силу тока «I» и  напряжение на входе нагрузки «U» при сварке целлофановых пакетов, для соединения  металлических, пластмассовых деталей. Соответственно меняются и величины, зависящие от этих параметров:

  • Мощность «P».
  • Температура «T».

Это создает дополнительные преимущества при работе паяльником и значительно увеличивает его эксплуатационный срок, защищая от перегрева.

Практическое применение регуляторов ↑

Регулятор мощности паяльника до 2000 w

Разработаны как отдельные регулирующие устройства для изменения мощности и температуры, так и совмещенные в одной схеме.

Причем, каждая конструкция может управлять и другими бытовыми электроприборами. Например,  регулятор мощности паяльника применяют для изменения уровня освещения любой лампы.

А регулятор для паяльника с терморезистором (терморегулятор) используют для отключения нагрузки в нагревательных приборах.

Рассмотрим работу каждого устройства:

  • Терморегулятор для паяльника управляет моментом отключения нагрузки. При увеличении температуры выше нормы, он ограничивает величину входных параметров или вовсе отключает паяльник. При уменьшении температуры жала до установленного уровня опять включает его.
  • Регулятор мощности позволяет при уменьшении-увеличении (от 0-100% в идеале) входных параметров добиться качественной пайки или сварного шва (пластмасса, целлофан).

В магазинах можно приобрести специальное устройство, которое автоматически поддерживает (регулирует) мощность нагрузки, температуру нагрева и так далее – паяльную станцию. Но не все мастера могут ее приобрести. Поэтому они применяют самодельные устройства.

Принципиальные схемы ↑

Регулятор напряжения для паяльника

Трансформаторный регулятор напряжения для паяльника

Такой регулятор (на несколько положений) можно сделать из трансформатора мощностью примерно 250 Вт с переключателем или из «ЛАТРа».

Вторичная обмотка ТР рассчитывается на ток около 1 А и выходное напряжение около 250В .  Это позволит подключить паяльник или  нагрузку мощностью около 100 Вт.

Для включения более мощной нагрузки (например, 500 Вт), необходим расчет трансформатора по формулам приведенным ниже:

Pтр = Pн * 2

где Pтр – мощность трансформатора, Pн – мощность нагрузки

Iо = Pн /  110

где Iо – ток выходной обмотки,  Pн – мощность нагрузки, 110 – минимальное напряжение выходной обмотки

По формулам выходит, что при нагрузке 500 Вт мощность трансформатора составляет около 1 кВт, а выходная обмотка должна выдерживать ток около 5 А. Такой ток выдерживает провод сечением 1 мм.

Работа устройства

Напряжение 220В идет на трансформатор ТР и передается вторичной обмоткой через переключатель на нагрузку. Переключением S1 разность потенциалов на выходе ТР изменяется от 250В (верхнее положение) до 150В (нижнее положение).

Это позволяет управлять мощностью в более широких пределах. Напряжение ниже 150В для регулирования применять нецелесообразно.

Важно

Верхнее положение переключателя (250В) используют зимой, когда напряжение сети занижено, и температура жала не достигает точки плавления припоя.

Схема регулятора мощности паяльника, выполненная на тиристорах, является более совершенной.

Мощность регулируется резистором R2 (внизу). Такая схема управляет нагрузкой  60 Вт и свободно умещается в корпус обычной электрической розетки или БП мобильных телефонов.

Регулятор температуры жала паяльника выполняют по схеме

Регулируемая мощность  около 200 Вт. Терморезистор R3 крепится непосредственно около жала или прямо на него. Тип терморезистора R3:  КМТ-4, или аналогичный. Регулятором R1 “Температура” подбирают момент отключения паяльника при достижении необходимой температуры.

Для регулирования температуры электрической плиты вместо тринистора VS1 и диодов выпрямителя VD2 надо применить более мощные детали. Например, для нагревателя мощностью 2000 Вт необходим тринистор КУ202М и диоды Д246. Их надо установить на алюминиевые радиаторы с площадью поверхности эффективного охлаждения: для тринистора – 300 см 2 ,  для диодов – 70 см2 на каждый.

Регулятор мощности и температуры за 10 минут ↑

Самый простой регулятор мощности для паяльника (два уровня) состоит из диода Д226 и кнопки (выключателя). Он позволяет подключать и регулировать нагрузку (паяльник или лампочку) мощностью примерно 200 Вт.

При замкнутом выключателе на паяльник (нагрузка) подается все напряжение, и он включен обычном режиме. При размыкании выключателя на нагрузку идет однополупериодное напряжение (примерно 150-170 В). Мощность и температура уменьшаются, но паяльник остается в состоянии нагрева и при включении кнопки уже через 30 с вновь готов к работе.

Примитивный терморегулятор собирается из деталей старого утюга с регулятором  на биметаллических пластинах. А если дополнить его вышеописанной схемой на одном диоде, то у вас получится простейший регулятор мощности и температуры.

Источник: http://mastter.ru/5788-reguljator-naprjazhenija-dlja-pajalnika.html

Хороший регулятор мощности паяльника

 Давно известно, что когда паяльник перегревается, то жало покрывается окислами и быстро выгорает, особенно у дешевых китайских. Поэтому соберем хорошую схему регулятора мощности, которая  будет управлять степенью его нагрева.

      Основным элементом схемы является мощный симистор (симметричный тиристор). Он работает также как тиристор, но не имеет анода и катода, ток в нем  может протекать в обоих направлениях. Управляет симистор симетричный динистор или диак, в данном случае DB3 (советский аналог КН 102).

Динистор можно найти в баласте эконом лампы, в электронном трансформаторе или купить (стоит копейки). Динистор можно условно назвать разрядником. Он имеет определенное напряжение пробоя и откроется только по достижении этого значения.

По даташиту на DB3 это в среднем 28- 30В. При каждой полуволне сетевого напряжения конденсатор С1 заряжается через R1 и R2. Когда напряжение дойдет до значения пробоя динистора, он откроется и на управляющий электрод симистора поступит напряжение. Симистор сработает (откроется), ток пойдет через нагрузку.

ЦепочкаVD1, VD2,C2, R3 предназначена для нормального срабатывания тиристора при минимальной выходной мощности. Принцип работы всех аналогичных схем одинаков: чем больше время задержки включения тиристора, тем меньше выходная мощность.

      Данная схема отличается тем, что стабильно работает при любой выходной мощности. Заменив  только тиристор на более мощный можно получить регулятор, способный коммутировать нагрузку в десятки киловатт.

Например, у меня прошлой зимой  он использовался с обогревателем на 5кВт. Если регулятор используется для паяльника то можно обойтись без теплоотвода. В случае мощных нагрузок понадобится соответствующий радиатор.

      Печатная плата компактная и может поместиться в спичечном коробке, можно собрать регулятор даже в рукоятке паяльника. Я собрал его в небольшом корпусе. Кстати, многие китайские промышленные паяльники дополненые таким простым регулятором анонсируют как “паяльную станцию”.

Список компонентов 

  • Купить готовый регулятор мощности можно тут
  • Купить симистор можно тут
  • Динистор  30шт за 0,85$ купить можно тут
  • Диоды 1n4007 100шт за 0,75$ купить можно тут
  • Переменный резистор 500k 5шт за 2,7$ купить можно тут
  • Набор резисторов 600шт за 2,85$ купить можно тут

{youtube}gKzuD_SHBiY{/youtube}

Источник: https://vip-cxema.org/index.php/home/bloki-pitaniya/331-khoroshij-regulyator-moshchnosti-payalnika

Регулятор для паяльника

Наверняка, среди начинающих заниматься электроникой, есть обладатели паяльников средней и большой мощности. В данном случае, я подразумеваю, разумеется, мощность паяльника для пайки электроники.  Причем иногда это бывают не дедушкины монстры, с жалом толщиной с мизинец, а вполне аккуратные ЭПСН 40 Ватт.

Такими паяльниками, если заточить жало под острый конус, вполне удобно паять транзисторы, резисторы и прочие выводные детали, а при необходимости, даже можно выполнить разовые работы по пайке SMD деталей. Если бы не одно но…

У таких паяльников, даже если мощность их равна всего сорока ваттам, температура жала довольно высока, и при пайке, велика вероятность перегреть полупроводниковые детали. 

Совет

Покупать новый паяльник мощностью 25 ватт в этом случае нет необходимости, достаточно собрать регулятор мощности на тиристоре или симисторе. У меня есть, для личного пользования, регулятор мощности на тиристоре КУ201Л.

Схема работает безотказно много лет, и позволяет регулировать мощность от половины до максимума. Сегодня ко мне обратился знакомый, заинтересовавшийся радиоделом, и имеющий как раз такой паяльник.

Решено было помочь человеку, и чтобы желание заниматься электроникой, не пропало из-за финансовых преград, я согласился собрать регулятор мощности. Были куплены необходимые детали, обошедшиеся всего приблизительно в 70 рублей, и приступил к сборке.

Сама сборка настолько элементарна, что спаять этот регулятор сможет любой человек, умеющий отличить симистор от резистора. Собрал все навесным монтажем, соединив детали на скрутку, с последующим пропаиванием соединений. 
Ниже приведена схема регулятора:

Существуют подобные схемы, как на тиристорах, так и на симисторах. Остановился на этой схеме потому, что в ней, в отличии от той, которую собирал ранее, мощность регулируется до нуля, а не до половины.

Знакомый также высказал пожелание, чтобы устройство при необходимости можно было использовать и для регулировки яркости свечения ламп накаливания.

Ниже приведен список деталей необходимых для сборки:

Разберем их подробнее: 

В первую очередь нам нужен симистор, способный регулировать мощность до 300 Ватт, чтобы был запас по мощности, и рабочее напряжение 400 вольт и выше. Цоколевку симистора можно видеть на рисунке ниже:

Для начинающих, не сталкивавшихся ранее с симисторами, приведу его эквивалентную схему:

Обратите внимание

Иначе говоря, здесь мы видим 2 встречно – параллельно установленных тиристора, с общим управляющим электродом. Симистор нужно прикрепить на радиатор, нанеся термопасту. Обычно пользуюсь отечественной КПТ–8.

Такой площади радиатора, будет достаточно для долговременной работы симистора, даже при значительной мощности нагрузки, не беспокоясь о его перегреве.

При работе устройства светится светодиод. Подойдет любой на напряжение 2.5 – 3 вольта. Движком переменного резистора, мы регулируем мощность от нуля до максимума.

Верхний по схеме вывод переменного резистора, это будет крайний левый вывод резистора, если повернуть его лицевой стороной к себе. Левый и средний выводы переменного резистора, нужно соединить перемычкой.

Переменный резистор подойдет сопротивлением 470 – 500 КилоОм, с линейной зависимостью. Напомню, для отечественных резисторов, должна быть в маркировке буква А, для импортных буква Б (английская В).

Диод для схемы нужен рассчитанный на обратное напряжение 400 – 1000 вольт, 1 ампер. Конденсатор керамический, рассчитанный на работу при напряжении до 50 вольт. Также в схеме применен Динистор DB3. Резистор нужен типа МЛТ, или аналогичный импортный, на мощность 0.25 Ватт.

Динистор не имеет полярности. Иногда динистор также называют четырехслойным диодом. Ниже приведена его эквивалентная схема:

Вся сборка регулятора заняла у меня меньше часа. Были нарезаны кусочки монтажного провода, выводы деталей были удлинены, скручены и надежно пропаяны. Устройство, выполненное навесным монтажем, в ходе эксплуатации не менее надежно и долговечно, чем выполненное на печатной плате, если сам монтаж проведен на совесть. В таком виде устройство было после пайки:

Все оголенные выводы деталей были заизолированы изолентой и скотчем, в несколько слоев. Оформление в корпус оставил заказчику, потому что на вкус и цвет, как говориться… Осталось самое элементарное подключить розетку, шнур с вилкой и устройством можно будет пользоваться.

Важно

Для проверки регулятора, подал на него 220 вольт на вход, соединив проводом с вилкой, и с крокодилами на другом конце. К выходу регулятора, также была подключена с помощью крокодилов, лампа 200 ватт. Регулировка была плавной и меня вполне устроила.

За пять минут работы тиристор не успел нагреться, что говорит о том, что примененного мной радиатора, для работы совместно с паяльником будет более чем достаточно. Автор AKV.

   Бытовая техника

Источник: http://elwo.ru/publ/skhemy_bytovoj_tekhniki/reguljator_dlja_pajalnika/20-1-0-842

Простой регулятор мощности для паяльника – схема

Собери простой регулятор мощности для паяльника за час

Эта статья о том, как собрать самый простой регулятор мощности для паяльника или другой подобной нагрузки.

Схему такого регулятор можно разместить в сетевой вилке или в корпусе от сгоревшего или ненужного малогабаритного блока питания. На сборку устройства уйдёт от силы час-два.

Близкие темы

Стабильный регулятор мощности своими руками

Как сделать цифровой осциллограф из компьютера своими руками?

Как за час сделать импульсный блок питания из сгоревшей лампочки?

Читайте также:  Конструкция и устройство бензопилы

Вступление

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора.

Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.

Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.

Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.

На картинке видно, что куда поступает и откуда выходит.

Ремарка.

В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.

Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть.

Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван.

Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.

При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.

Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу и о тех и о других схемных решениях.

Регулятор мощности на симисторе КУ208Г

VS1 – КУ208Г

HL1 – МН3… МН13 и т.д.

R1 – 220k

R2 – 1k

R3 – 300E

C1 – 0,1mk

На этой схеме изображён, на мой взгляд, самый простой и удачный вариант регулятора, управляющим элементом которого служит симистор КУ208Г. Этот регулятор управляет мощностью от ноля до максимума.

Назначение элементов

HL1 – линеаризует управление и является индикатором.

С1 – генерирует пилообразный импульс и защищает схему управления от помех.

R1 – регулятор мощности.

R2 – ограничивает ток через анод – катод VS1 и R1.

R3 – ограничивает ток через HL1 и управляющий электрод VS1.

Регулятор мощности на мощном тиристоре КУ202Н

VS1 – КУ202Н

VD1 – 1N5408

R1 – 220k

R3 – 1k

R4 – 30k

C1 – 0,1mkF

Похожую схему можно собрать на тиристоре КУ202Н. Её отличие от схемы на симисторе в том, что диапазон регулировки мощности регулятора составляет 50… 100%.

На эпюре видно, что ограничение происходит только по одной полуволне, тогда как другая беспрепятственно проходит через диод VD1 в нагрузку.

VS1 – BT169D

VD1 – 1N4007

R1 – 220k

R3 – 1k

R4 – 30k

R5* – 470E

C1 – 0,1mkF

Данная схема, собранная на самом дешёвом маломощном тиристоре B169D, отличается от схемы приведённой выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и снижают амплитуду сигнала управления. Необходимость этого вызвана высокой чувствительностью маломощных тиристоров. Регулятор регулирует мощность в диапазоне 50… 100%.

Регулятор мощности на тиристоре с диапазоном регулировки 0… 100%

VS1 – BT169D

VD1… VD4 – 1N4007

R1 – 220k

R3 – 1k

R4 – 30k

R5* – 470E

C1 – 0,1mkF

Чтобы регулятор на тиристоре мог управлять мощностью от ноля до 100%, нужно добавить в схему диодный мост.

Теперь схема работает аналогично симисторному регулятору.

Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».

Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.

Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.

Совет

Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.

Так выглядят регуляторы мощности, которые я использую много лет.

to see this player.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.

Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.

Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.

Тип прибора Катод Управ. Анод
BT169D(E, G) 1 2 3
CR02AM-8 3 1 2
MCR100-6(8) 1 2 3

28 Апрель, 2011 (23:10) в Источники питания, Сделай сам

Источник: https://oldoctober.com/ru/power_regulator/

Регулятор мощности на симисторе: принцип работы, варианты схем, как сделать своими руками

Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора.

Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте.

В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой.

Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод.

Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода).

Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора.

Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Обратите внимание

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 – 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 – 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 – 22 мкФ х 50 В; С2 – 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 – 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В – При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.

Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Источник: https://www.asutpp.ru/reguljator-moshhnosti-na-simistore.html

Ссылка на основную публикацию
Adblock
detector